The 10 Commandments of

Release Engineering

Dinah McNutt
Google, Inc.
mcnutt@google.com

Google

Release Engineering

"Accelerating the path from
development to operations”

Google

Overview

e These commandments are truths based on my 20+ years of
developing commercial software

e Concepts apply to software products for both internal and
external customers

e Ideas presented are my own, not necessarily Google's

Background

e Release processes are usually an afterthought
e Most systems do the minimum required to "get it done"

e Release processes should be treated as products in their
own right

e There is often a big disconnect between the developer
writing the code, the person writing tests, and the system
admin who installs it

Steps in Release Process

Check out
code

Y

Compile

v

Test

Release

(GO 3'1

The Real Process

Deployment

IS

Check out | Bugries
code
v
Compile
v
Unit Tests | | Package
\J
Canaries [+ System |
Tests
v -
More System ar.v. Y
Tests &&J U L

The Real, Real Process

CheCk OUt Bug Fixes
Build Artifacts > code [«
\ +
N
T~ ompile
Reports
\\ *
\Mﬁ, Package
Alerts/Monitor \\
\J
M> System | ——
—~— Tests
\
Deployment More System '; "
Tests -

I

Thou shalt use a source
code control system

GO 8Ja:"

I - Thou shalt use a source code
control system

e Everything needed to release should be under source
control

o source code

o build files

o build tools

o documentation

e Doesn't matter what you use, just use something!

Google

Reproducible Build Environment

e Not usually checked into a SCR, but still may need to be
recreated:

o Operating System
o Compilers
o Build tools

e Possible solutions:
o Backups
o Installation servers
o Virtual machines

Configuration Management

e Binary dependencies
e Configuration files

e Manifests

e Change lists

e Machine configurations

Google

But what about binaries?

e Binaries don’t belong in an SCM

e If you must, consider a separate repository

Google

Moral

Reproductbility 1s a
virtue

GO 8Ja:"

I1

Thou shalt use the right
tool(s) for the job

GO 8Ja:"

IT - Thou shalt use the right tool(s) for

the job

Complex projects may require multiple build tools
Examples:

eant, maven, gradle forjava

e make for C and C++ - the dependency checking is crucial

e scripting languages (bash, python, etc.)

Google

Moral

LInnecessary
complexity is a sin

GO 8Ja:"

IT1
Thou shalt write
portable and low-
maintenance build files

(GO SJC'

IIT - Thou shalt write portable and low-
maintenance build files

e Plan to support multiple architectures and OS versions

e Use centralized configuration files for definitions common to
build files
o Compiler options will change between architectures
o Editing hundreds of files for a single change is no fun

e Provide template files so developers can easily create new
build files

Google

Use a unique build ID

e Must provide enough information so the build can be
uniquely identified and reproduced

e Examples:
0164532 20131008 2 RCO0
020131008 RCO05

e Must be easily obtainable
o Included in packaging
e Embedded in binaries

Moral

Measure twice, cut
once.
Knowmg your
ancestry is a virtue.

L_'JQJ SJC

Y
Thou shalt use a release
process that is
reproducible

(GO SJC'

IV - Thou shalt use a release process
that is reproducible

And automated...
And unattended...
And reproducible...

e Adopt a continuous build policy

e | everage open source tools like Jenkins, bamboo, buildbot,
teamcity

e \Write your own

Google

Release Engineering as a Service

e Developers should be able to operate in self-service mode

e Tools should support implementation of best practices and
policies

e This is where release engineers can offer significant value to
their organizations

V
Thou shalt use a

package manager

GO 8Ja:"

V - Thou shalt use a package manager

e Auditing

e | everage installation/upgrade/removal capabilities
e Package summary (who, what, when, etc.)

e Built-in version tracking and dependency checking
e Manifest

e Use native package managers when possible

Google

Moral

tar s not a package
manager...

GO 8Ja:"

VI
Thou shalt design an
upgrade process betore
releasing version 1.0

(GO SJC'

VI - Thou shalt design an upgrade
process before releasing version 1.0

e Packaging decisions can affect the ability to upgrade

e Design an upgrade process at the same time you are
designing an installation process

Google

Provide a complete
install/upgrade/uninstall process

e [otally automated process
e Rollback AND roll forward

e Packages should be relocatable

Moral

Not thinking ahead 1s a
sin.

GO 8Ja:"

VII
Thou shalt prowvide a

detailed log of what
thou hath done

(GO SJC'

VII - Thou shalt provide a detailed log
of what thou hath done

e |nstalling/Patching/Upgrading/Removing software should
provide a detailed log of what is happening

e Provide the ability to unpack and inspect the packages
without installing

e |deally there should be a "do nothing" option so | can see
what is going to happen first

e Critical for troubleshooting problems

Google

VIII
Thou shalt canary

Google

VIII - Thou shalt canary

e Practice of using domestic canaries to detect carbon
monoxide in coal mines

e |In software, refers to rolling out a release to a small number
of users

e Many problems only show up in a production environment

e Canarying can allow early detection

[X
Thou shalt keep the big

picture in mind

GO 8Ja:"

IX - Thou shalt keep the big picture in
mind

e Remember, it's Dev -> DevOps

X
Thou shalt apply these

commandments to

thyself
Google

IX - Thou shalt apply these
commandments to thyself

e Treat your release tools as products in their own write

e Dogfood your own best practices

Shameless Plug

The 2014 USENIX Summit on Release Engineering

June 20, 2014 Philadelphia
“From Dev to DevOps”

dinah@usenix.org

Sneak Peak at URES ‘14

e Caskey Dickson, Google, “By their powers combined--
monitoring and automated releases are like peanut butter
and chocolate”

e Chuck Rossi, Facebook,”Moving to Mobile”

e Daniel Cordes, Portware, “Deploying without a Web”

e Daniel Zapata, Netflix, “Going from 3 week to daily releases
at Netflix”

Sneak Peak at URES ‘14

e Glenn Brown, Maven Wave Partners, “It Works on My
Machine! How Container Technologies like Docker can
Revolutionize Continuous Integration”

e J. Paul Reed, Panel Discussion on “The Future of Release
Engineering”

e Jared Morrow, Basho, “Building Enterprise Software on
GitHub”

e John O’Duinn, Hortonworks, Keynote

