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Release Engineering

“Accelerating the path from 
development to operations”



Overview

● These commandments are truths based on my 20+ years of 
developing commercial software 

 
● Concepts apply to software products for both internal and 

external customers 
 
● Ideas presented are my own, not necessarily Google's



Background

● Release processes are usually an afterthought
 
● Most systems do the minimum required to "get it done"

 
● Release processes should be treated as products in their 

own right
 
● There is often a big disconnect between the developer 

writing the code, the person writing tests, and the system 
admin who installs it
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I
Thou shalt use a source 

code control system



I - Thou shalt use a source code 
control system

●Everything needed to release should be under source 
control

○ source code
○ build files
○ build tools
○ documentation

●Doesn't matter what you use, just use something!



Reproducible Build Environment

● Not usually checked into a SCR, but still may need to be 
recreated:

○ Operating System 
○ Compilers 
○ Build tools 

● Possible solutions:
○ Backups
○ Installation servers
○ Virtual machines



Configuration Management

●Binary dependencies

●Configuration files

●Manifests

●Change lists

●Machine configurations



But what about binaries?

●Binaries don’t belong in an SCM

●If you must, consider a separate repository



 Reproducibility is a 
virtue

Moral



II
Thou shalt use the right 

tool(s) for the job



II - Thou shalt use the right tool(s) for 
the job

Complex projects may require multiple build tools

Examples:

●ant, maven, gradle for java

● make for C and C++ - the dependency checking is crucial

● scripting languages (bash, python, etc.)



 Unnecessary 
complexity is a sin

Moral



III
Thou shalt write 

portable and low-
maintenance build files



III - Thou shalt write portable and low-
maintenance build files

● Plan to support multiple architectures and OS versions

● Use centralized configuration files for  definitions common to 
build files
○ Compiler options will change between architectures
○ Editing hundreds of files for a single change is no fun

● Provide template files so developers can easily create new 
build files 



Use a unique build ID

● Must provide enough information so the build can be 
uniquely identified and reproduced

●  Examples:
○ 164532_20131008_2_RC00
○ 20131008_RC05

 
● Must be easily obtainable

○ Included in packaging
● Embedded in binaries



Measure twice, cut 
once.

Knowing your 
ancestry is a virtue.

Moral



IV
Thou shalt use a release 

process that is 
reproducible



IV - Thou shalt use a release process 
that is reproducible

And automated...
And unattended...
And reproducible...

 
●  Adopt a continuous build policy

● Leverage open source tools like Jenkins, bamboo, buildbot, 
teamcity

● Write your own
 

Automation is a virtue.



Release Engineering as a Service

● Developers should be able to operate in self-service mode

● Tools should support implementation of best practices and 
policies

● This is where release engineers can offer significant value to 
their organizations



V
Thou shalt use a 
package manager



V - Thou shalt use a package manager

● Auditing
 
● Leverage installation/upgrade/removal capabilities

 
● Package summary (who, what, when, etc.)

● Built-in version tracking and dependency checking
 
● Manifest

 
● Use native package managers when possible

 



 

tar is not a package 
manager... 

Moral



VI
Thou shalt design an 

upgrade process before 
releasing version 1.0



VI - Thou shalt design an upgrade 
process before releasing version 1.0

● Packaging decisions can affect the ability to upgrade

● Design an upgrade process at the same time you are 
designing an installation process

 



Provide a complete 
install/upgrade/uninstall process
● Totally automated process

● Rollback AND roll forward

● Packages should be relocatable



 

Not thinking ahead is a 
sin. 

Moral



VII
Thou shalt provide a 
detailed log of what 

thou hath done



VII - Thou shalt provide a detailed log 
of what thou hath done

● Installing/Patching/Upgrading/Removing software should 
provide a detailed log of what is happening

● Provide the ability to unpack and inspect the packages 
without installing

 
● Ideally there should be a "do nothing" option so I can see 

what is going to happen first

● Critical for troubleshooting problems



VIII
Thou shalt canary



VIII - Thou shalt canary

● Practice of using domestic canaries to detect carbon 
monoxide in coal mines

● In software, refers to rolling out a release to a small number 
of users

 
● Many problems only show up in a production environment

● Canarying can allow early detection



IX
Thou shalt keep the big 

picture in mind



IX - Thou shalt keep the big picture in 
mind

● Remember, it’s Dev -> DevOps



X
Thou shalt apply these 

commandments to 
thyself



IX - Thou shalt apply these 
commandments to thyself

● Treat your release tools as products in their own write

● Dogfood your own best practices



Shameless Plug

The 2014 USENIX Summit on Release Engineering

June 20, 2014 Philadelphia

“From Dev to DevOps”

dinah@usenix.org



Sneak Peak at URES ‘14

● Caskey Dickson, Google, “By their powers combined--
monitoring and automated releases are like peanut butter 
and chocolate”

● Chuck Rossi, Facebook,”Moving to Mobile”

● Daniel Cordes, Portware, “Deploying without a Web”

● Daniel Zapata, Netflix, “Going from 3 week to daily releases 
at Netflix”



Sneak Peak at URES ‘14

● Glenn Brown, Maven Wave Partners, “It Works on My 
Machine! How Container Technologies like Docker can 
Revolutionize Continuous Integration”

● J. Paul Reed, Panel Discussion on “The Future of Release 
Engineering”

● Jared Morrow, Basho, “Building Enterprise Software on 
GitHub”

● John O’Duinn, Hortonworks, Keynote


