
The 10 Commandments of
Release Engineering

Dinah McNutt
Google, Inc.

mcnutt@google.com

Release Engineering

“Accelerating the path from
development to operations”

Overview

● These commandments are truths based on my 20+ years of
developing commercial software

● Concepts apply to software products for both internal and

external customers

● Ideas presented are my own, not necessarily Google's

Background

● Release processes are usually an afterthought

● Most systems do the minimum required to "get it done"

● Release processes should be treated as products in their

own right

● There is often a big disconnect between the developer

writing the code, the person writing tests, and the system
admin who installs it

Steps in Release Process

Check out
code

Compile

Test

Release

The Real Process

Check out
code

Compile

Unit Tests

Deployment

Package

System
Tests

Canaries

More System
Tests

Bug Fixes

The Real, Real Process

Check out
code

Compile

Unit Tests

Deployment

Package

System
Tests

Canaries

More System
Tests

Bug Fixes

Build Artifacts

Reports

Alerts/Monitoring

I
Thou shalt use a source

code control system

I - Thou shalt use a source code
control system

●Everything needed to release should be under source
control

○ source code
○ build files
○ build tools
○ documentation

●Doesn't matter what you use, just use something!

Reproducible Build Environment

● Not usually checked into a SCR, but still may need to be
recreated:

○ Operating System
○ Compilers
○ Build tools

● Possible solutions:
○ Backups
○ Installation servers
○ Virtual machines

Configuration Management

●Binary dependencies

●Configuration files

●Manifests

●Change lists

●Machine configurations

But what about binaries?

●Binaries don’t belong in an SCM

●If you must, consider a separate repository

 Reproducibility is a
virtue

Moral

II
Thou shalt use the right

tool(s) for the job

II - Thou shalt use the right tool(s) for
the job

Complex projects may require multiple build tools

Examples:

●ant, maven, gradle for java

● make for C and C++ - the dependency checking is crucial

● scripting languages (bash, python, etc.)

 Unnecessary
complexity is a sin

Moral

III
Thou shalt write

portable and low-
maintenance build files

III - Thou shalt write portable and low-
maintenance build files

● Plan to support multiple architectures and OS versions

● Use centralized configuration files for definitions common to
build files
○ Compiler options will change between architectures
○ Editing hundreds of files for a single change is no fun

● Provide template files so developers can easily create new
build files

Use a unique build ID

● Must provide enough information so the build can be
uniquely identified and reproduced

● Examples:
○ 164532_20131008_2_RC00
○ 20131008_RC05

● Must be easily obtainable

○ Included in packaging
● Embedded in binaries

Measure twice, cut
once.

Knowing your
ancestry is a virtue.

Moral

IV
Thou shalt use a release

process that is
reproducible

IV - Thou shalt use a release process
that is reproducible

And automated...
And unattended...
And reproducible...

● Adopt a continuous build policy

● Leverage open source tools like Jenkins, bamboo, buildbot,
teamcity

● Write your own

Automation is a virtue.

Release Engineering as a Service

● Developers should be able to operate in self-service mode

● Tools should support implementation of best practices and
policies

● This is where release engineers can offer significant value to
their organizations

V
Thou shalt use a
package manager

V - Thou shalt use a package manager

● Auditing

● Leverage installation/upgrade/removal capabilities

● Package summary (who, what, when, etc.)

● Built-in version tracking and dependency checking

● Manifest

● Use native package managers when possible

tar is not a package
manager...

Moral

VI
Thou shalt design an

upgrade process before
releasing version 1.0

VI - Thou shalt design an upgrade
process before releasing version 1.0

● Packaging decisions can affect the ability to upgrade

● Design an upgrade process at the same time you are
designing an installation process

Provide a complete
install/upgrade/uninstall process
● Totally automated process

● Rollback AND roll forward

● Packages should be relocatable

Not thinking ahead is a
sin.

Moral

VII
Thou shalt provide a
detailed log of what

thou hath done

VII - Thou shalt provide a detailed log
of what thou hath done

● Installing/Patching/Upgrading/Removing software should
provide a detailed log of what is happening

● Provide the ability to unpack and inspect the packages
without installing

● Ideally there should be a "do nothing" option so I can see

what is going to happen first

● Critical for troubleshooting problems

VIII
Thou shalt canary

VIII - Thou shalt canary

● Practice of using domestic canaries to detect carbon
monoxide in coal mines

● In software, refers to rolling out a release to a small number
of users

● Many problems only show up in a production environment

● Canarying can allow early detection

IX
Thou shalt keep the big

picture in mind

IX - Thou shalt keep the big picture in
mind

● Remember, it’s Dev -> DevOps

X
Thou shalt apply these

commandments to
thyself

IX - Thou shalt apply these
commandments to thyself

● Treat your release tools as products in their own write

● Dogfood your own best practices

Shameless Plug

The 2014 USENIX Summit on Release Engineering

June 20, 2014 Philadelphia

“From Dev to DevOps”

dinah@usenix.org

Sneak Peak at URES ‘14

● Caskey Dickson, Google, “By their powers combined--
monitoring and automated releases are like peanut butter
and chocolate”

● Chuck Rossi, Facebook,”Moving to Mobile”

● Daniel Cordes, Portware, “Deploying without a Web”

● Daniel Zapata, Netflix, “Going from 3 week to daily releases
at Netflix”

Sneak Peak at URES ‘14

● Glenn Brown, Maven Wave Partners, “It Works on My
Machine! How Container Technologies like Docker can
Revolutionize Continuous Integration”

● J. Paul Reed, Panel Discussion on “The Future of Release
Engineering”

● Jared Morrow, Basho, “Building Enterprise Software on
GitHub”

● John O’Duinn, Hortonworks, Keynote

